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Foldamet? is referred to any polymer with a strong tendency
to adopt a specific compact conformation. Recently, peptidomimetic
foldamers, such g$-peptides;* y-peptides;® ando-peptides, have
attracted a lot of attention because of their unique conformations
and interesting bioactivities 13 Our group has found that peptides
derived fromo- and3-aminoxy acids represent novel foldamers,
which form several types of rigid secondary structures. For example,
peptides consisting af-aminoxy acids ang-aminoxy acids can
form eight-membered-ring hydrogen bondsN—O turn}+15and
nine-membered-ring hydrogen bonds Nl—O turn)1617 respec-
tively, between adjacent residues. In addition, oligomers of homo-
chiral a-aminoxy acids ang3-aminoxy acids can form helical
structures consisting of consecutive-® turns (1.8 helix'4 and
1.7, helix,'817 respectively). To enrich the category of aminoxy
acid residues and test the ability of other aminoxy acids to form
local intramolecular hydrogen bonds, we started to synthesize
y-aminoxy acid peptides and explore their conformational proper-
ties. Here we report that*-aminoxy peptides are new peptidomi-
metic foldamers to form turn and helix structures with a 10-
membered-ring intramolecular hydrogen bond.
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y-Aminoxy diamidesl and2, each containing ong-aminoxy
acid residue, were synthesized to test their ability to form
intramolecular hydrogen bonds: one without a side chijrafd
the other with a phenyl group at the C4-positi@). (/*-Aminoxy
triamide 3 was also prepared to examine its potential to form
consecutive intramolecular hydrogen bonds.

Figure 1 presents the-\H stretching region of the FT-IR spectra
of 1-3. The spectra were recorded at a very low concentration (2
mM) at which intermolecular hydrogen bonding is unlikely to
occur!® For 1, we observed two large peaks (3446 and 3392'¢m

and two small peaks (3338 and 3280 ¢jn The former two are
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Figure 1. FT-IR of 1-3 at low concentration (2 mM in CiCly).
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Figure 2. NOE signals observed fdr—3.

which are assigned to the stretching frequencies of the non-
hydrogen-bonded amide NHjroup, the non-hydrogen-bonded
N-oxy amide NH and NH, groups, the hydrogen-bonded NH
group, and the hydrogen-bonded amideyNjroups, respectively.
Since the non-hydrogen-bonded amide MNignal is weak while

the hydrogen-bonded amide Nidnd NH, signals are strong, the

IR results indicate thad can form two consecutiveg N—O turns
(Figure 2).

The results obtained froAtH NMR studies are in agreement with
the FT-IR experiments. Table 1 summarizes the chemical shifts of
the amide protons and their chemical shift changes when the
solutions were diluted from 200 to 0.78 mM in CR3Cbr when

assigned to the stretching frequencies of the non-hydrogen-bondeqDMSOdG was added graduallpta 5 mMsolution of1—3in CDCl

amide NH, and NH, groups, whereas the latter two are due to the
stretching of the weakly hydrogen-bonded N&hd NH, groups.

This result suggests that no obvious intramolecular hydrogen bond ., NH,

is formed for the two amide protons &f In the IR spectrum o2,

at room temperature. The chemical shifts of two amide protons of
1 at 0.78 mM are rather upfield (8.62 ppm for NEind 6.20 ppm
respectively), with relatively large chemical shift changes
in bothH NMR dilution and DMSOes addition studies, showing

three peaks were observed, which are assigned to the StretChInglhat no obvious intramolecular hydrogen bond is formed. Similarly,

frequencies of the non-hydrogen-bonded amide, KB428 cnt?),
non-hydrogen-bonde-oxy amide NH (3388 cn1?), and hydrogen-
bonded amide NK{(3324 cn?) groups, respectively. The fact that
the peak at 3428 cm is very weak relative to the one at 3324
cm ! suggests that Njof 2 forms a 10-membered-ring intramo-
lecular hydrogen bond, i.e.,7aN—O turn (Figure 2). FoB, we
observed four major peaks: 3441, 3387, 3325, and 3228,cm
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the N-oxy amide protons (Nk of 2 and 3 appear to be non-
hydrogen-bonded. However, the chemical shifts of,H2 and3

are unusually downfield (7.05, and 10.57 ppm, respectively) and
show little change in théH NMR dilution (A6 0.2 ppm) and
DMSO-ds titration studies A6 < 0.4 ppm), revealing that these
two amide protons form intramolecular hydrogen bonds. Although
the chemical shift of N of 3 could not be measured accurately
due to its overlap with the aromatic protons 7.2—7.5 ppm), it
was unusually downfield and showed little changeltih NMR

10.1021/ja044493+ CCC: $27.50 © 2004 American Chemical Society
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Table 1. Chemical Shifts of Amide Protons and Their Chemical
Shift Changes (Adnn Values) in *H NMR Dilution Studies (dilu.)
and DMSO-ds Addition Studies (DMSO) of 1-3 at 25 °C

NH, (ppm) NH, (ppm)
02 AS(dilu)  Aoc(DMSO) o8 Ad(dilu) Ao (DMSO)
1 8.62 1.06 1.66 6.20 0.56 0.91
2 7.94 0.82 2.15 7.05 0.2 <0.4
3 781 1.07 2.30 10.5 0.2 0.34

a4 is the amide NH'’s chemical shift obtained from f&NMR spectrum
of the indicated compound at 0.78 mM concentration in GDETAJ in
the dilution studies was calculated A8 = dny (200 mMM) — Onn (0.78
mM). ¢ Ad in the DMSO4ds addition studies was calculated A8 = dnn
(9% DMSO+4s in CDClg) — dnn (5 mM in CDCL). 4 The signal overlaps
with the aromatic protons)(7.2—7.5 ppm) upon the addition of DMSO.

4

Figure 3. X-ray structure of2.

dilution and DMSOe€g addition studies. Thus, we conclude that
NH. of 3 also forms intramolecular hydrogen bonds.

We performed 2D-NOESY studies @&f3 in CDCl; at 5 mM
to probe their conformations in solutiéhAs shown in Figure 2,
we found a strong NOE signal betweep &hd ay proton of2 but
not 1. This suggests that the backbone2a$ bent, while that ofl
is extended. The NOE signal betweep &hd H of 3 was also
found. Because foverlaps with aromatic protons, its NOE signal
with other protons could not be identified.

We obtained single crystals & suitable for X-ray structural
analysis. As shown in Figure 3, an intramolecular 10-membered-
ring hydrogen bond is formed between=O; and NH;,. The
hydrogen bond distance (GH) is 2.07 A, and the G-O bond is
gauche to the &-Cs bond with a 69 dihedral anglé1C,CsC, 0.

In our previously reported-aminoxy peptides, the nine-membered-
ring hydrogen between=€0; and NH. is further stabilized by
another six-membered-ring hydrogen bond between;Nidnd
NOi+1.18 However, in the X-ray structure & the distance between
NO.;1 and NH;» is 3.3 A, which is too long to form a hydrogen
bond.

The CD spectra of compoun@sand3 taken at room temperature
in 2,2,2-trifluoroethanol are shown in Figure 4. The CD signals

have been normalized for the concentration and the number of

backbone N-O turns of each compound. The CD curveafnd

3, featuring a maximum at 192 nm and a shoulder at about 210

nm, suggest tha2 and3 share theyr N—O turn structure, distinct
from the previously reported and N—O turn structures.

In summary, compoundl consisting of the unsubstituted
y-aminoxy acid cannot form intramolecular hydrogen bonds,
possibly because the carbon backbone loftends to adopt
consecutive anti conformations. However, with the addition of a
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Figure 4. Circular dichroism (CD) spectra of compounglsand 3 (0.4
mM in 2,2,2-trifluoroethanol) at 25C.

phenyl group at the position, the resulting’-aminoxy peptide
favors the anti orientation of bulky phenyl group relative to the
C,—Cgp bond, thus forming thes N—O turn. In peptide3, the two
consecutive homochiral 10-membered-ring hydrogen bonds form
a novel helical structure. Therefore, peptides consisting/%ef
aminoxy acids represent new peptidomimetic foldamers.
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